THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4230 2024-25 Lecture 4 January 15, 2025 (Wednesday)

1 Recall

In the previous lectures, we introduce the *feasible set* K as follows:

 $K = \{ x \in \mathbb{R}^n : g_i(x) \le 0, \ h_j(x) = 0, \ i = 1, \dots, \ell, \ j = 1, \dots, m \}$

Yesterday, we had discussed the Qualification condition as well:

We say the constraints K is **qualified** at $x \in K$ if $p_i \ge 0$ and $q_j \in \mathbb{R}$ satisfy $\begin{cases} \sum_{i=1}^{\ell} p_i g_i(x) = 0 \\ \sum_{i=1}^{\ell} p_i \nabla g_i(x) + \sum_{j=1}^{m} q_j \nabla h_j(x) = \mathbf{0} \end{cases}$ then it implies that $p_1 = \dots = p_{\ell} = q_1 = \dots = q_m = 0$.

and the Theorem related to optimal solution x^* and qualified K is shown as follows:

Let $x^* \in K$ be a solution to (P) and assume that K is **qualified** at x^* . Then there exists $\lambda_1, \cdots, \lambda_\ell \ge 0$ and $\mu_1, \cdots, \mu_m \in \mathbb{R}$ such that $\begin{cases} \sum_{i=1}^\ell \lambda_i g_i(x^*) = 0\\ \nabla f(x^*) + \sum_{i=1}^\ell \lambda_i \nabla g_i(x^*) + \sum_{j=1}^m \mu_j \nabla h_j(x^*) = \mathbf{0} \end{cases}$

2 Checking Qualification Condition

Let us introduce a proposition first.

Proposition 1. Let $x \in K$ satisfies the followings (Mangasarian Fromovitz condition)

- 1. the family of vectors $(\nabla h_1(x), \ldots, \nabla h_m(x))$ is linearly independent.
- 2. there exists a vector $v \in \mathbb{R}^n$ satisfying

$$\langle \nabla h_j(x), v \rangle = 0, \ \forall j = 1, \dots, m$$

and

$$\langle \nabla g_i(x), v \rangle < 0, \ \forall i \in I(x) := \{k : g_k(x) = 0\}.$$

Then the constraint K is qualified at $x \in K$.

Remarks. Note that

$$(\nabla h_1(x), \dots, \nabla h_m(x))$$
 is linearly independent
 $\iff \sum_{j=1}^m q_j \nabla h_j(x) = 0 \implies q_j = 0, \forall j = 1, \dots, m$
 $\iff \operatorname{Rank}(\nabla h(x)) = m$

Proof. Let $p_1, \ldots, p_\ell \ge 0, q_1, \ldots, q_m \in \mathbb{R}$ such that

$$\begin{cases} \sum_{i=1}^{\ell} p_i g_i(x) = 0 \iff p_i g_i(x) = 0, \ \forall i = 1, \dots, \ell \\ \sum_{i=1}^{\ell} p_i \nabla g_i(x) + \sum_{j=1}^{m} q_j \nabla h_j(x) = \mathbf{0} \end{cases}$$

Define $I(x) := \{i = 1, ..., \ell : g_i(x) = 0\}$ be the index set. Then, the equality holds would imply that

$$p_i = 0, \ \forall i \notin I(x)$$
 because $g_i(x) < 0$

Hence, we have

$$\implies \sum_{i \in I(x)} p_i \nabla g_i(x) + \sum_{j=1}^m q_j \nabla h_j(x) = \mathbf{0}$$
$$\implies \sum_{i \in I(x)} \underbrace{p_i}_{\geq 0} \underbrace{\langle \nabla g_i(x), v \rangle}_{< 0} + \sum_{j=1}^m q_j \underbrace{\langle \nabla h_j(x), v \rangle}_{= 0} = 0$$

So, it follows that

- 1. $\forall i \notin I(x)$, we have $p_i = 0$.
- 2. $\forall i \in I(x)$, we also have $p_i = 0$.

and thus

$$\sum_{i=1}^{\ell} \underbrace{p_i}_{=0} \nabla g_i(x) + \sum_{j=1}^{m} q_j \nabla h_j(x) = \sum_{j=1}^{m} q_j \nabla h_j(x) = 0$$

and $q_1 = q_2 = \cdots = q_m = 0$ (by linearly independence).

Let us go through an example and check the qualification condition by using the above proposition. **Example 1.** Discuss the qualification condition for the problem $\min_{x^2+y^2=1} 2x + y$. **Solution.** From previous, we know $\ell = 0$, m = 1 and letting $h(x, y) = x^2 + y^2 - 1$. This follows that $\nabla h(x, y) = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$. It is clear that $\nabla h(x, y) \neq \mathbf{0}$ as $x^2 + y^2 = 1$. So $\left\{ \begin{pmatrix} 2x \\ 2y \end{pmatrix} \right\}$ is linear independent, the first item of the proposition is satisfied. Moreover, letting $v = \begin{pmatrix} -y \\ x \end{pmatrix}$, then we verify that $\left| \begin{pmatrix} 2x \\ 2y \end{pmatrix} \right|_{x=0}^{2} = 0$

$$\left\langle \begin{pmatrix} 2x\\2y \end{pmatrix}, \begin{pmatrix} -y\\x \end{pmatrix} \right\rangle = 0$$

for all $(x, y) \in \mathbb{R}^2$ which also satisfied the second item of the proposition. By the above proposition, K is qualified at each point $(x, y) \in K$.

Prepared by Max Shung

Example 2. Discuss the qualification condition for the problem $\min_{x^2+y^2 \le 1} xy$.

Solution. Clearly, we have $\ell = 1, m = 0$ and let $g(x, y) = x^2 + y^2 - 1$. Then, we have $\nabla g(x, y) = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$. Letting $v = -\begin{pmatrix} 2x \\ 2y \end{pmatrix} \in \mathbb{R}^2$, and we compute $\left\langle \nabla g(x, y), -\begin{pmatrix} 2x \\ 2y \end{pmatrix} \right\rangle = -(4x^2 + 4y^2) < 0$

if $(x, y) \neq (0, 0)$.

By the above proposition, we conclude that K is qualified at each points except 0.

Example 3. Discuss the qualification for the problem

$$\min_{\substack{x^2 + y^2 = 1 \\ y^2 + z^2 = 4}} x + z$$

Solution. Since $\ell = 0$, m = 2, letting $h_1(x, y, z) = x^2 + y^2 - 1$ and $h_2(x, y, z) = y^2 + z^2 - 4$. Then, we have

$$abla h_1 = \begin{pmatrix} 2x\\2y\\0 \end{pmatrix}, \quad \nabla h_2 = \begin{pmatrix} 0\\2y\\2z \end{pmatrix}$$

Note that if z = 0, then $y = \pm 2$ and both contradicting to $x^2 + y^2 = 1$. For $z \neq 0$, then we have Rank $\begin{pmatrix} 2x & 0 \\ 2y & 2y \\ 0 & 2z \end{pmatrix} = 2$. To check the first item, it is easy that $\{\nabla h_1, \nabla h_2\}$ is linearly independent.

For the second item, as the underlying space is \mathbb{R}^3 , there exists $v \in \mathbb{R}^3$ such that

$$v \perp \operatorname{Span}(\nabla h_1, \nabla h_2) \iff \langle v, \nabla h_i \rangle = 0, \ \forall i = 1, 2$$

By the previous proposition, K is qualified at all points $(x, y, z) \in K$.

- End of Lecture 4 -